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Remark-lo. The quantities 6~ = au (x, O)/Q and 6~ = a+(~, o)/aqa are, respectively, called 
the first and second variations of the displacement u. It follows from Theorems 1 and 2 that 

6u, 6% E v(Q*). 

Remark 2O. If r(y*,q)<O the proof of Theorem 1 will differ somewhat from that presented. 
In particular, the differentiability of u and w should be taken into account in Q\s* and Sq 

should be replaced by Q+ in the integral identities (3.2), (3.5), (3.10), the estimates (3.6), 

(3.11), (3.12), and in the limit (3.8). 
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ON CORRECT FORMULATIONS OF LEKHNITSKII PROBLEMS* 

N.KH. ARUTYUNYAN, A.B. MOVCHAN, and S.A. NAZAROV 

The deformation of an elastic half-space with a cylindrical cavity under 

its own weight is considered. Since the solution of the problem increases 

at infinity, the question arises of its uniqueness and of the correct 
formulation of the problem itself. It is shown that two such formulations 

exist that yield unique solutions (that differ only to the accuracy of 

rigid displacements). The former corresponds to a decrease in the dis- 

placement uj in a layer abutting on the half-space boundary, and the 

latter to a decrease in the stress tensor components ojk, j,k= 1.2. The 

solutions corresponding to these formulations are distinct. They can be 

obtained by a passage to the limit as D-m from solutions of problems 

on the deformation of a semicylinder of diameter D with a coaxial 
cylindrical cavity: in the first case the side surface of the cylinder 

is considered rigidly clamped, and in the second stress-free. 
The results are generalized to the case of non-symmetric paraboloidal 

cavities and elastic inclusions. Formulations are discussed of problems 

in which the force of gravity depends on the distance to the half-space 

boundary. 

1. The boundary value problem and its particular solutions. Let g be a domain 

*Prikl.Matem.!fekhan.,50,2,237.-246,1986 
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in a plane Ra bounded by a smooth contour ag and containing the origin, while G is a semi- 
cylinder {X E RS : y = (x1, x2) E g, z=x,>O).Let P denote the half-space R+3 = {CT :z3>O} with 
the cut set G; B = Ras\ G. Besides the Cartesian coordinates x the cylindrical coordinates 
(r, 8, 2) will 

Consider 
the direction 
the form 

where h and p 
is the stress 

When the 

later 6e &ed, where x1 = r cos 8, x3 = r sin 0, z3 = 2. 
theproblemof the deformation of the domain D due to its own weight. We denote 
of gravity by the unit vector e. The corresponding boundary value problem has 

~Au (x) + (h + p)grad div u (x) + ye = 0, x E Q (1.1) 

IJ:nj (u; I) = 0, 5 E an (1.2) 
are Lame coefficients, y is the specific gravity, n is the external normal, 0(u) 
tensor, and u is the displacement vector. 
domain g is a circle{y E Re; 1 y 1 <R}, and e = ec3) (e'j) are directions in R3) the 

problem (1.11, (1.2) is called the Lekhnitskii problem. An axisymmetric solution of this 
problem is presented in /l, 2/, given by the formulas 

u,(5)= - v S&z, uz(x)=2;;y;l +2+ (1.3) 
i+v Y~Y+l+ 

urr (u; 2) = - F v (l--f) I Ulj@ (u; z) = - yy1+$) (1.4) 
bzz (u; z) = - yz 

The components of the displacement vector and the stress tensor not indicated in (1.3) 
and (1.4) are equal to zero. 

t4oreover, in the case of axial symmetry of the domain 52 the solution of problem (l.l), 
(1.2) for an arbitrary vector e can be obtained as the superposition of the solution of the 
Lekhnitskii problem and another solution corresponding to the vector e = e(l). This was found 
by Geogdzhayev 

.1(x,=& 
i 
-+(3+2v)(l+~)$x~20- 

$[(3f2v)(l+v)cosa~+(17+15v-2v2)sin26]+ 

(3-2v)(1+v)Raln$+(l+v)Rzsinz6] 

(1.5) 

~~(x)=&[+(3+2v)(l+~)~+~(14-t_lOv-4v~)- 

(1 + v) R'> sinec0se,u3(z)=-v(l+v) 2E X($ +r)cosO 

urr (u; 5) = - + [ + (3 + 2~) (9 - r) + 3 (r - q)] 00s e 

0~e(u;z)=+[+(3+2v)($-r)f(l+2v)r- 

(1 - 2v) f] cOse 

(1.6) 

Both solutions are characterized by quadratic growth of the displacement vector components 
at infinity. The next three sections of this paper are devoted to constructing solutions of 
the homogeneous problem (l.l), (1.2) that have the same growth O(ls I") as 11 I--too. 

2. Homogeneous solutions in a half-space. At infinity the cylinder G is incident 
in any conical neighbourhood of the axis Oss, hence the principal terms of the asymptotic 
form of the solutions of the homogeneous problem (l.l), (1.2) as 1 z I+ co should agree with 
the solutions of the same problem in a half-space (see /3/). We list those of the mentioned 
vector functions in R+3 that do not decrease but have no more than quadratic gyowth. It is 
known that they are all homogeneous vector polynomials @,P) of degree m = 0,1,2, and their 
number is 3m. For m =0 the vectors &@(q = 1,2,3)describerigidtranslationaldisplacements. 
Among the solutions til.Q), q = I,..., 6, three correspond to rotations while the rest have the 
form 

(111 - $9 0); (%, Xl, 0); (51, 58, -2h (A + 2P)-'z3 

Finally, the polynomials u(%P),q = 1,...,9 are 
(2.1) 
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(2.2) 

(-(4p + 3k)(h -I- P)-'"1% x*a, h@ + Iv Ws); 
(X2X3, XiXs, - X*X;) 

The stresses I$'"' = Ujk (U("'s9)) corresponding to the displacements (2.1), (2.2) are given 
by the equations 

011 
u,u = _ 022' (1 1) =e$.m =$. 

’ 
011 

(1.3) = &3, _ - (2.3) 
2~(2~ + 3~x2~ + h)-l 

(J-23 (=)=#21'0 = - @(h + p)(h + 2Q.Q; (2.4) 
(291) 
022 = 011 @se)= - 4$(h + 2/q-1x3 
ojy+j) = zpxj; @gjj) = _ +X8; q+j) = _ 4Pxj; 

#$yj=4yxj; @ez.r+j)= 4!_bx& .y+j)= 2p(h + 2/A)@ + p)-'x2 
@,a+j) o+j,s-j =- 8~x2; rJy+i'"'j'=Q(h + p)_'xs 
@,e+j) 

(Jl2 = -P (3h + 4P)(h + P)-lxs-j; &9’ =2pxs, j=l,2 

The stress tensor components not presented in (2.3), (2.4) are zero. 

3. The problem on a plane with an orifice. The solution of the homogeneous 
problem in a half-space leaves a residual in the boundary conditions on aG. This residual can 
be cancelled by solutions of the boundary value problem in R*\g. The appropriate differential 

operators are obtained from the operators in system (l.l), (1.2) by elimination of the 

derivative with respect to z. Therefore, a set of the plane problem of the theory of elasticity 
and the problem of antiplane shear in R2\g arises 

~V.vw(y)+(hf~)VV~W(y)=O, PV.VW,(Y)=O, z/ER2\g (3.1) 

Z'"'(W;y)=P(y), P$(Y)=Ps(Y). !I=ag (3.2) 

Here W = (w,; w,); ? = V,; Z is a two-dimensional stress tensor, and n is the unit external 

normal to 8g. We denote the three-dimensional vector (w,, w2, w,) by w. The solution of 

problem (3.1), (3.2) exists for any smooth loads P=.(p,,p,),p, and allows of the asymptotic 

representation 

W(Y) = 2 (,jT’) (Y) + i cjk e T”’ (Y)] + 0 (I Y I-“) 
j=l k=l 

(see /4/, for example), where Cjr cjk are constants, T(j) are columns of a block matrix 

consisting of a two-dimensional Somigliani tensor (the elements in the first two rows and 

columns) and the fundamental solution (2np))l In ly 1-l of the operator - pV.V in RS (the 
element in the lower right-hand corner). 

The solution (3.3) has a logarithmic increase at infinity. It decreases only if the 

principal load vector P and the mean ps on 8g equal zero (then ~1 =O). If 

pj(Y)= $, nk (Y) (a?“) + Uyzk'yl + Uf”)Yd 

(3.3) 

(3.4) 

in (3.2) and eP(jVk) are constants, then by using the method of /5/, expressions can be 

obtained for the coefficients cj in (3.3) 

cj = - 1 g 1 (a,(i 1) + anO, 2)) (3.5) 
Here Ig I is the area of the domain g. 

4. Solutions of the homogeneous problem in R. We construct solutions of the 

homogeneous problem (l.l), (1.2) that do not decrease at infinity. Six are trivial, rigid 

displacements. The rest havemainly the asymptotic form (2.1) or (2.2). We will first 

examine the displacement (2.1). According to (2.31, the vectors s:i~~) (q = 1, 2, 3) leave a 

residual of the form (3.4) in the boundary conditions (1.2) on 6'G, &jyk) = az(jrk) = 0. By virtue 

of (3.3) and (3.5), solutions w%~)(Y) exist that decrease as 0( I y I-1) as I y1-t m and 

cancel these residuals. We set 

VCl,9) (5) = Y(lP9) (2) + x (z-1 I y I) w(1,9) (Y) (4.1) 

where x is a shearing function from Cm (R,); x(t) = 1 for t Q 2R and x(t) = 0 for t>3R; 
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the number R is selected so that the domain g is incident in a circle of radius R. 
We consider the residual of the vector (4.1) in the homogeneous Eqs.(l.l), (1.2). We 

are here interested only in its behaviour as 15 I--t m. In this sense, the boundary conditions 
are satisfied completely and the residual ,Fcv4) in the Lam6 system is concentrated in the 
cone Ka = {r:s-1 1~ 1 c=(ZR, 3R)]. The inequalities 

c,s< Ixl<C,z* C*lYI<lXl <C,lYl (4.2) 
are valid for points of this cone, where ck and Ck are certain positive constants. Consequently 
we finally obtain the estimate IF(l$')(x)l <const Ix Ims for FK4). Therefore, there exists an 
energetic solution u(%q) of the problem of the theory of elasticity in 8, that vanishes at 
infinity and cancels the mentioned residual while the sum 

U(1.9) (x) = V(r,q) (x) + U(1,9) (x), q = 1, 2, 3 (4.3) 

is a solution of the homogeneous problem (l.l), (1.2). 
We will now consider the displacement (2.2). Because of (2.4), the residual of the 

vector V(*.g) in the boundary conditions (1.2) on 8G has the form (3.4) in which afz"", a2 (j,k) 

are constants, while &k' = cIkz, cJL = const. Hence, a vector function w(%g) (y, 2) = W!%%O) (y) + 
zz~~~**,~)(y), exists subject to the homogeneous Lame system and cancelling the residual in the 
boundary conditions on aG such that 

w'*,q,l) (y) = 0 (I y I-‘), uG~q.0) (I/) = 0 (1 In I y II) 

The vector n(2.q) (5) + x (2-l I y I)w:z.@ (y) satisfies the boundary conditions on as1 outside 
a certain sphere and the residual in the Lam6 system is concentrated in the cone Ke and 
allows of the representation 

F,*,@ (5) + 0 (I x 1-s I In I x II) (4.4) 

(here the inequalities (4.2) are usedinestimating the remainder). The first component in 
(4.4) has the form 

F@,q) (5) = I x 1-a (In ) 5 If”~O’ (5 I 5 I-‘) + f(q.1) (x I x I-‘)) (4.5) 

where fiq*j),j = 0,1 are smooth functions on the hemisphere S+a = {x: /x 1 = 1, x,>O} (their 
carriers are in a ring cut out by the cone ,KR on Scp). 

As is shown (in a more general situation) in /4, 5/, the Lamd system with right-hand 
side (4.5) in R+3 under the condition that the half-space boundary in stress-free, has the 
particular solution 

(4.6) 

($'e,q,n) are smooth functions in S+*). 
The solution (4.6) cancels the principal part (4.5) of the residual (4.4) in the Lame 

system, but it leaves a residual P, in its turn, in the boundary condition on a,'$. It can be 
confirmed that 

P (x) = 2 ml I(ln .z)*p(qsa) (y) + In zp(q*Q (y) + p(*,O) (y)J + 0 (z-” I In 2 I*) (4.7) 

where the components of the vectors p(q.n) possess a zero mean on ag. According to Sect.3 
solutions Y(R.n) of the problem (l.l), (1.2) with right-hand sides p(q,n) exist such that 
Y(qsn) = 0 (I y I-'). 

We finally set 

Wq) (5) = Y(2.q’ (5) + x (z“ 1 y I) w@-9) (y, z) + lpq’ (x) + 

.x (z-l I y I) z-l [(ln z)* Y(qs2) (y) + In zY(q*l) (y) + Y@*O) (v)l 

Taking account of (4.5), (4.7), we obtain that the vector-function (4.8) leaves the 
residuals F and S in the homogeneous Lami system and in the boundary condition (1.2), 
respectively, for which the following estimates hold: 

(4.3) 

] S (x) I < const (I x ITa I In I 5 I I*) 
l F (5) 1 Q const I x le3 I In I I I I when I Y I > 3Rz 

I F (2) I < const I 5 Ien I In I 5 I I (I x I-’ + I v I-’ I ln I 41) 
when ly 1<3Rz 

It therefore follows that the following integrals are finite 
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and, therefore, energetic solutions u@,*) exist that vanish at infinity and also cancel these 

residuals. Hence, the vector-functions 

c'(7.q) (I) = Wn) (x) + c&q) (z), * = 1, . . .) 9 G.9) 
are solutions of the homogeneous problem (l.l), (1.2). Moreover, all the displacements (4.3) 
and (4.9) are linearly independent and the energy integral becomes infinite. Confirmation 
of the fact that all the solutions U of the homogeneous problem (1.11, (1.2) subject to the 

inequality 

I LJ (5) I < const I 5 12 (4.10) 

are exhaused by linear combinations of the rigid displacements and the vector-functions (4.3), 

(4.91, requires reliance upon complex and awkward mathematical apparatus using the results 

and general methods of investigating elliptical boundary value problems in domains with 

singular points (see /3--8/J. The appropriate proof is omitted in this paper. 

5. Correct formulations of the Lekhnitskii problem. We will now consider 

axisymmetric problem whose particular solution was found by Lekhnitskii and which has the 

form of (1.3), (1.4). Among the linear combinations of vectors (2.1), (2.2), there is just 
one vector that is invariant under rotation around the 02 axis. It equals (apart from a 

factor) 

v(5) = u@,~)(z) + ~[~.~)(r) = (--2y,z; -2y,a; ra + 2h(h + 2p)-Y) 

The solution u (x) = u(**l) (x) + umPz) (X) of the homogeneous problem (1.1), (1.2) 

(5.1) 

i+v R’ 
U,(r,z)=-2zr+22~~ (5.2) 

corresponds to this vector. 

This solution is constructed as shown in Sect-q. The circumstance that the algorithm 

proposed yields the solution in closed form is accidental; in general, it will enable us to 

find just the asymptotic form. The stress tensor components o(U) are defined by the 

relationships 

grr(U; r, ZJ=-2pZ~(i-$), %lt3(“; ‘1 ‘)’ 

-2pz+g(1+ $), 0,,(U; r, z)=uvz (U; r, 2) ==O 

(5.3) 

Comparing (5.2) and (1.3) we see that a decrease in the components u,and U, as 15 13 00 
is characteristic for the displacements (1.3) in the layer Q,J = {z~ 8 :~(a?} of arbitrary 

thickness d, while the displacements (5.2) do not possess this property. Consequently, the 

additional conditions that yield the uniqueness theorem for the solution (1.3), (1.4) of the 

Lekhnitskii problem have the form 

uj(r)=~(l) as IzI+w,zEQ~; i=l,2 (5.4) 

It is clear that in order to satisfy (5.4) it is necessary to assume that the constant 

C in the linear combination 

0 = U + cu (5.5) 
equals zero. 

On the other hand, the stresses err and cse in (5.3) and (1.4) have identical behaviour 

at infinity, apart from a factor. Consequently, the validity of the following constraints 

sjk (u(l); z) = o (1) as 1 x I+ 00, z E Qd; j, k = 1, 2 (5.6) 

can be achieved for the vector (5.5). 

Direct calculations show that for c = -vy [2~(1 -/- v)l-' the vector (5.5) is given by 

the formulas 

u,") (2) c vE-lyzr, u,(l) (r) = --y (2E)-i(z2 + vr2), us (2) = 0 

while the corresponding stresses have the form 

or, (u(l); z) = tree (u('); x) = u,, (u(i); 5) = 0, 

cJzz (UC',; x) = --yz 

(5.7) 

(5.8) 

Thus the Lekhnitskii problem allows of two formulations in the class of vector-functions 

subject to the relationship (4.10). The first is associated with the additional requirement 

(5.4) of a decrease in the displacement component U, in any layer of finite thickness, and 

the second with the requirement (5.6) of a decrease in the stress tensor components (sm. 000. 
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The unique solutions corresponding to these formulations are given by (1.3), (1.4) and (5.7), 
(5.8). 

6. Correct formulations of the problem of a vertical half-space with a 
cylindrical cavity. It is seen from (1.5) that the solution of problem (l.l), (1.2) 
constructed by Geogdzhayev for e = e(r) has a quadratic increase O(1z I") in the layer Qd 
abutting on the half-space boundary. 

AsisshowninSect.B,the solution of this problem is determined to the accuracy of a 
linear combination of the twelve vector-functions (4.3), (4.9). we select coefficients of 
this linear combination such that its sum with the solution (1.5) has the least possible 
growth in the layer Qd. Omitting the computations, we write down the result 

By using the 
solution (6.1) of 
(1.1) in the form 

The stresses 
Consequently, the 

~(2) = u + y (1 +~)I16El-' (16UW + (1-2~) .!P5) + 4W~')) (6.1) 
procedure elucidatedinSect.4,we construct the asymptotic form of the 
problem (1.11, (1.2), e = e(i). We select the solution of the LamQ system 

u (5) = --y (2p)_1 (22, 0, 0) (6.2) 

or, W and %e (v) equal zero identically, while u~(u;x) = --yzcos 8. 
vector 

ZW(') (y) + UP) (y) (6.3) 

is the next approximation to u(i). 
The component zu~(') of the vector-function w(r) = (O,O,ws'~) from (6.3) is a solution of 

the external Neumann problem 

pAw,(')(y)=O, ye W\g, ~(dws(')/ar)(y)~ycose, YE &? 

(see Sect.4) andisgiven bythe equality 

w(l) (y) = (O,O, - yR2 (pr)-‘cos 0) (6.4) 
(We recall that the domain CJ is a circle of radius R 1. The vector W@) comprised of the 
first two components of the vector W(O) = (WI@), u$'), 0) in (6.3) is a solution of the plane 
problem of the theory of elasticity 

~V.VW@) (y) + (h + p) VV*JW) (y) - yR2 (h + pL)p-i Vx 
(r-l cos 0) = 0, y E R2 \ g 

z,, (w(O); i?, 6) = yR hp-' COS 8, &e (wq R, e) = o 

and is calculated by means of the formula 

~(0) cr q = yR1 /I (3 - 2V)lll (rR-‘)cos 8 
- 

w - [(3 - 2v)ln (rR”) + 11 sin8 (6.5) 

yR4(1+2v) cos e 
1611'9 I/ u sin 8 - 

yR1 (4-V)(3-4v) In (rR-l)cose 

SP(i- v) -[[In(rR-1)+(3-4v)-1]sinB’~ 

Thus, the approximation has the form 

Y (2) = v(r) + ZW(') (y) + w(O) (y) (8.8) 
(Here, compared with (4.1) and (4.8), there is no multiplication by the shear since the 
vector-functions (6.4) and (6.5) are defined everywhere in 8). In order for the sum (6.6) 
to satisfy the homogeneous boundary conditions (1.2) on the half-space boundary, satisfaction 
of the relationship 

a.98 @W(l) (y) + W(O) (y)) E (2p + h) Ws(') (y) + V.W(OJ (y) = 0 (6.7) 
is necessary. 

By direct verification from (6.4) and (6.5) we deduce that (6.7) does not hold. There- 
fore, the displacements (6.6) are only asymptotic 

u(*) (5) = V(z) + 0 (I In 1 x1/*) w3) 
and not the exact value of the solution. Such a solution would occur in both versions of the 
Lekhnitskii .probleminSect.5 (it was mentioned there that this circumstance is accidental). 
Consequently, solution (6.1) is not defined explicitly in terms of elementary functions and 
we can only speak of its existence. 

The solution mentioned is characterized by slight growth of the displacement in the layer 
(see (6.8) and (6.2)-(6.6)). 

$oblem grow as O(r) or 
Since all the solutions (4.3), (4.9) of the homogeneous 

0 V), in this layer according to (2.1), (2.2), then the 
solution subject to the condition 
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u@) (r) = 0 (I In / z 11”) dS 15 I-+‘=, xEf& (6.9) 
is unique (apart from rigid displacements). 

We will now examine the sum of the solution (1.5) and a linear combination of the vector- 

functions (4.3), (4.9). The stresses (1.6) grow as 0 (r") in Qd. We find the coefficients 
of the mentioned linear combination so as to guarantee the least possible growth of the stress 

in this layer. Omitting simple but cumbersome computations, we present the result 

u(3) = u + clu (2.4) + c,u(2,5) + c3v(%Q (6.10) 

(c, = -2c (2v2 + 9Y i_ 2), C) = c (2YZ + 9Y - 13), 

cQ = --1Oc, c = y (16E)-') 

All the stresses constructed by means of the displacement (6.10) decrease in the layer 

Qd - Only the component a,, (UC")), which equals yz/4 + D (1) and is only bounded is the 
exception. 

As formulas (2.3), (2.4) show, the functions ajk(lJ~'*~)), where n = 1,2, q = l,...,sn, j,k = 
1,2, do not vanish at infinity. Consequently, the solution (6.10) of problem (l.l), (1.2) 
is unique for e zz a(l) apart from rigid displacements if it is subject to the additional 

condition (5.6). 

Thus, (6.1) and (6.10) are two distinct solutions of problem (l.l), (1.2) for e= e(r) 

that correspond to two different formulations: satisfaction of condition (6.9) or condition 

(5.6). 

7. A problem with an arbitrary direction of gravity. AS already mentioned, 
the solution of problem (l.l), (1.2) is obtained in the case of an arbitrary vector e by the 

superposition of solutions of the Lekhnitskii problem and of the problem examined inSect.G.We 

formulate results following from the assertions of Sects.5and6. Despite the fact that the 

case of a circular cylinder was considered in these sections, the procedure described in Sect.4 

enables us to conclude that all that was said about the corresponding problems is conserved 

even in the case of an arbitrary section r~. Consequently, we shall henceforth speak of the 

non-symmetric problem. 

The addition of condition (6.9) yields thefirst correct formulation of the problem. The 

solution of problem (l.l), (1.2), (6.9) is unique apart from rigid translational displacements. 

The constraint (6.9) can here be weakened and replaced by the following 

U(m)=O(IZI) as IsI-too,sEQd (7.1) 

since, as before, the homogeneous solutions (4.3) and (4.9) do not satisfy relationship (7.1). 

The second correct formulation is ensured by fixing the behaviour of the stresses in 

the layer Qd. The appropriate problem (l.l), (1.2), (5.6) has a unique solution (apart 

from rigid displacements). Note that the condition (5.6) can be strengthened by imposing 

constraints on the vector (J@)(U): 

ujk (u; z) = o (I), u(') (u; r) = 0 (1) as 1 z I --f 00, z c- Qd (7.2) 

Problem (l.l), (1.2), (7.2) is equivalent to problem (l-l), (1.2), (5.6). 

8. Generalizations and corollaries. lo. We note that both solutions (1.3), (1.4) 

and (5.7), (5.8) corresponding to the correct formulations of the Lekhnitskii problem presented 

inSect.5canbeobtained from the solution of the problem in a semicylinder of large diameter D. 

by passing to the limit as D-em . Namely, let CD = {z E Rs:z>O, r < D12), r~ = {x E RS; 
z > 0, r= D/2) and RD = Sl n C . Then the solution (1.31, (1.4) of problem (l.l), (1.21, 

(5.4) for e = e!") is the limit of the solution un of the problem in ,8n with rigid clamping 

conditions on rn as Deco. The solution (5.7), (5.8) of problem (l.l), (1.2), (5.6) for 

e = ec3) is, in turn, the limit of the solutions of such problems under the condition that 

the side surface rn is stress-free. 

2O. The method presented insect.4 for constructing solutions of the homogeneous problem 

has a broader domain of application. Any "paraboloid" 

n = {z E R3 : h (z)-' y E g, z > 0); h (z) = zl= H (z-‘), 6 > 0 (8.1) 

where t-t H(t) is a function smooth in the neighbourhood of the point t = 0, can be proposed 

as the set G introducedinSect.l.Thedomain B can here be formed by the removal of F from 

any non-empty open cone K with smooth directrix containing the Oz axis. The domains G and 

P should coincide with II and K\n only outside some sphere; the behaviour of the 

boundary at a finite distance is not essential. 

3O. Moreover, it can be considered that the body G is filled with a material with other 

Lame constants Iz, and pO, i.e., the conjugate problem can be considered: 



pAu(z) + (h + p)grad div ~(2) + ye = 0, z E 52 

poAu” (4 + (ho + po) grad div u0 (5) +.y,e = 0, z E G 

a(“‘) (u; 2) = 0, z E 69 \aC; a&‘) (u”; z) = 0, z E r3G \ 652 

u (2) = z2 (2), a@) (u; z) = UP (u”; I), z E 3G f-j 82 
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(8.2) 

All the quantities referring to the inclusion are provided with the superscript O. An 

analogous problem for a plane with limited inclusion g is here obtained as a "model" problem 
from Sect.3. The properties of the solutions of such a problem are in no way different from 
those elucidated in Sect.3. Theprocedure forconstructing the asymptotic form from Sect.4 is 

thereby carried over also to the case of problem (8.2). 
Attention should be given to the fact that the passage to the case of an absolutely 

rigid inclusion within the framework of the mathematical results presented is impossible in 

problem (8.2). The reason for this is that the properties of the solutions of the correspond- 

ing model problem (system (3.1) with the boundary conditions W= D, Wa= (p3 on ag) differ 

radically from the properties of problem (3. i), (3.2). 

40. We note that the proceudre presentedinSect. for seeking the solutions of the 

homogeneous problem is similar to the algorithm /9, lO/ for constructing the asymptotic form 

of solutions of elliptic boundary value problems with small singular perturbations of the 

domain. 
50. The two formulations presented insect.7 forproblem (l.l), (l-2), within whose 

framework the uniqueness theorem holds, hold even in the case of problem (8.2). The domain 

G can here be not only a semicylinder with section g (the case 6 = 1 in (8.1)), but also a 

set shrinking at infinity (the case 6 >i) and a "paraboloidal" set expanding at infinity 

(the case 6 E (0, 1)). 
6O. Let us examine the situation when gravity acts in the direction of the Oz axis 

but varies as the "depth"increases, i.e., the mass forces f in system (1.1) equal y (2) e@). 

We confine ourselves here to a study of the cylindrical domain G (with the arbitrary section 

9) * 
We assume that the function y decreases as o(z-I-*), 6>0, at infinity. We set 

* t 
u (xl = u (4 + e% (4, 

1 
cp (2) = 2p + R ss y (z) dz at 

0 0 

(8.3) 

Then cp (z) = bz + 0 ((1 -I z)‘“), where b = const and the vector-function v is a solution of 

the boundary value problem 

pAu (2) + (h + p) grad div v (z) = O,, r E Q (8.4) 
u(S) (0; z) = 0, z E 88 \ r3G; ucn) (v; 2) = --h$ (2) n (5). 

XE aG n i3B 

The principal term 1u of the asymptotic form v has the form lit= (W, O), where W is a 

solution of problem (3.1), (3.2) that vanishes at infinity for P = --h$(n,, a,), ps = 0. It 

leaves residuals F and S in the Lam& system and the boundary condition on aQ\ aG; 1 F(x) 1 = 
0 (r-’ (1 + z)-1-d), 1 S (x)1 = 0 (+).A sinSect.4.a solution exists that cancels these residuals and 

reaches the order of magnitude O(I In Ix II). Therefore, by repeating the discussionsfromSects.5 
and 7, we obtain that the problem under consideration is uniquely solvable in the class of 

vector-functions subject to the relationships (7.1). 
In order to obtain the solution of the problem inthecase of the constraint (5.6), we 

should set 
a (r) = u (x) + I4cL (2p + 31)1-r (--2hrcp' (z), 0, 4 (p + h)cp (z)+ 

9" (z)% 

Problem (8.4) also undergoes corresponding changes. 

Finally, we assume that the mass forces in (l-l), (1.2) are determined by the formula 

f (x) = y (ra2)e(S) 

where y is a smooth function 6>0. In order for an energetic solution to exist (this 

solution is unique), the inclusion lz IfE L,(Q) is necessary, or equivalently 

1 ra (r2 + r-V) dy < 00 

n 0 R-47 

This latter inequality is satisfied only if (1 + t)y(t)E L, (0, + co) and 6>4. 
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ELASTIC EQUILIBRIUM OF A PLATE WITH A 
PARTIALLY REINFORCED CURVILINEPIR HOLE* 

A.A. SYAS'KII 

An approximate method is proposed to determine the state of stress near a 

curvilinear hole whose outline is partially reinforced by a thin elastic 

rod of variable cross-section in an infinite plate. The problem is 

reduced to a system of two singular integral equations in the contact 

stresses by the method of complex-function theory /l/, and the method of 

boundary collocation is used to solve them /2/. Certain special cases 

of the problem and numerical examples are examined. 

Problems of reducing the stress concentration around circular holes 
in plates have been discussed in /3, 4/. In practice, all the previous 

investigations on this problem have been devoted to problems of 

reinforcement of the whole hole outline by rods of constant or variable 

cross-section. 

1. We consider an infinite isotropic plate of thickness 2h with a circular hole of radius 

po = 1. Part of the hole outline, determining the central angle 2a,, is reinforced by a 

thin elastic rod of variable cross-section. We consider the thickness of the reinforcement 

to be constant, and the width to be a continuous smooth function of the arc. The plate is 

subjected to bending in two mutually perpendicular directions by the moments M, = M,-,M, = 

M”- applied at "infinity". There is not external load on the hole outline. 

The plate middle plane is referred to a p,h polar coordinate system with the pole at 

the centre of the hole. The polar axis passes through the middle of the reinforcing rod and 

makes an angle fiO with the direction of action of the moment M,. We consider the rod as an 

elastic line subjected to bending and torsion /3/. 
The boundary conditions of the boundary value problem and its solution on the hole 

outline, in the notation of /l/, have the form 

.dD- (to) +‘D’ (to) = -kf (to) 

a+ (to) - a- (t,,) = k (1 + Y)-' [MA - vMp - i (1 + y) H,J 

*Prikl.Matem.l4ekhan.,50,2,247-254,1986 


